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ABSTRACT: 

 It is evident that the shape of the failure rate function plays an inevitable role in repair and replacement 

strategies, the mean residual life function is more relevant as the same summarizes the entire residual life functions. 

 In this paper we formulate different fuzzy partial ordering results related to mean residual life order and 

proportional mean residual life model with some characterization results. Some properties of the up mean residual 

life model have been obtained along with the closure of the up mean residual life order under mixture type 

operation. 

 We consider fuzzy random variables to capture the mean residual function and s how that redundancy at the 

component level is not superior to that at the system level. Even when the lifetimes are original and the spare 

components are i.i.d., though the result holds for usual stochastic order. The up mean residual life order is 

characterized in terms of the DMRL class. We capture some of the characterizations of the DMRL class. 

Keywords: Fuzzy random variables, Hazard rate order, Stochastic order, Mean residual life order, DMRL and fuzzy 

up mean residual order. 

INTRODUCTION 

 In life testing situations, the mean additional life time 

given that a component has survived until time t is a function 

of t, called the mean residual life. We consider the special case 

of mean residual life interms of fuzzy random variables. More 

specifically, if the fuzzy random variables X represents the life 

of a component, then the mean residual life is given by mα(t) = 

E[Xα – t / Xα > t]. 

The mean residual life has been employed in life 

length by various authors, e.g. Bryson and siddigui (1969), 

Hollander and Proschan (1975) and Muth (1977). Limiting 

properties of the mean residual life have been studied by 

Meillijson (1972), Balkema and de Hann (1974), and more 

recently by Bradley and Gupta [2], (2002). A smooth estimator 

of the mean residual life is given by chaubey and Sen (1999).  

It is well known that the failure rate function can be 

expressed quite well in terms of mean residual life and its 
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derivative. However, the inverse problem – namely that of 

expressing the mean residual life in terms of the failure rate 

typically involves an integral of the complicated expressions.   

1. PRELIMINARIES 

 Let 𝐹�  (𝑡) =  𝑃 (𝑋 > 𝑡) be the survival function of a 

random variable X having finite mean µ. Then t mean residual 

life (mrl) m(t) of X is defined as  

 m(t) = E[X – t / X > t] for t < t* and t = 0 otherwise, 

where t* = sup{t: 𝐹�  (𝑡) > 0}. 

If P(X ≥ 0) = 1 then µ is finite and m(0) = µ. Also m(t) < ∞ for 

0 ≤ t < ∞. 

If t* = ∞ then we have m(t) = 
∫ 𝐹�(𝑥)𝑑𝑥∞
𝑡
𝐹�(𝑡)

 

In this paper, we consider only non-negative fuzzy 

random variables, although most of the results can be proved 

for fuzzy random variables with support in (0, 1]. 

Note that, although m(t) ≥ 0 for all t, every non-

negative function does not respect the mean residual life 

function corresponding to some random variable. In fact, a 

function m(.) represents a mean residual life function of some 

non-negative random variable with an absolutely continuous 

distribution function iff it possesses the following properties by 

Bhattacharjee [1], Shaked and Shanthikumar[8] and JEL 

Piriyakumar and N. renganathan[3] 

i) 0 ≤ m(t) < ∞ for all t ≥ 0. 

ii) m(0) ≥ 0  

iii) m(t) is continuous 

iv) m(t) + t is increasing on [0, ∞] 

v) when these exists a t0 such that m(t0) = 0 

then m(t) = 0 for all t ≥ t0. Otherwise, when 

there does not exist such a t0 with m(t0) = 0 

then ∫ 1
𝑚(𝑡)

𝑑𝑡 =  ∞∞
0  

The smaller the mean residual life function, the 

smaller the variable X should be in some stochastic sense. This 

statement gives the motivation behind the mean residual life 

order defined as follows: 

Definition 1.1: 

 Let X and Y be two random variables with mean 

residual life functions 𝑚𝑋 and 𝑚𝑌 respectively. Then X is said 

to be smaller than Y in the mean residual life order, denoted by 

X≤𝑚𝑟𝑙Y if 𝑚𝑋(t) ≤ 𝑚𝑌(t) for all t. 

 X≤𝑚𝑟𝑙Y iff  
∫ 𝐹𝑋����(𝑢)𝑑𝑢∞
𝑥
∫ 𝐹𝑌����(𝑢)𝑑𝑢∞
𝑥

 decreasing in x 

over �𝑥: ∫ 𝐹𝑌���(𝑢)𝑑𝑢 > 0∞
𝑥 � where 𝐹𝑋���(. ) denotes the survival 

function of the random variable Z. 

Definition 1.2: 

 X is said to be mean residual life aging faster than Y 

if  𝑚𝑋(𝑡)
𝑚𝑌(𝑡)

 is increasing in t ≥ 0  (or) ultimately mean residual life 

aging faster than Y if above holds for sufficiently large t. 

2. FUZZY RANDOM VARIABLES 

The concept of fuzzy random variable was introduced by 

Kwakernaak [5,6] and Puri and Ralescu[8]. A fuzzy random 

variable is just a random variable that takes on values in a 

space of fuzzy sets. The outcomes of Kwakernaak’s fuzzy 

random variables are fuzzy real subsets and the extreme points 

of their α-cuts are classical random variables. Fuzzy random 

variables are mathematical descriptions for fuzzy stochastic 

phenomena, but only one time descriptions. 

Definition 2.1: 

 Let (Ω ,  𝔸, P) be probability space. A fuzzy set 

valued mapping X: Ω →F(R) is called a fuzzy random variable 

if for each B∈B  and for each α∈(0, 1]. 𝑋𝛼−1(𝐵) =

{𝜔𝜖𝛺;  𝑋𝛼(𝜔) ∩ 𝐵 ≠  𝜑} ∈  𝔸. 

3. FUZZY MEAN RESIDUAL LIFE ORDERING 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013                                                               902 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

In this section the concept of fuzzy mean residual life 

functions are introduced. The conceptualization is 

accomplished using resolution identity. It is possible to 

construct a closed fuzzy number from a family of closed 

intervals. Using this technique the formulation of fuzzy 

probability distribution functions, fuzzy mean residual life 

functions are introduced. It is established that under certain 

assumptions the relative fuzzy hazard rate ordering leads to the 

corresponding ultimate fuzzy mean residual life ordering. 

 Let X be a non-negative random variable with 

distribution function (fuzzy) F(x) and density function (fuzzy) 

f(x). Let F(x) denote the failure distribution of X, 

  𝑟𝐹(𝑥) =  𝑓(𝑥)
𝐹�(𝑥)

  denote the hazard rates and 

𝐹�(𝑥) = 1 − 𝐹(𝑥) denote the survival function X. 

Definition 3.1: 

 Let X be a non-negative fuzzy random variable with 

survival function 𝐹𝛼�  and a finite mean µ. The α-level mean 

residual life of 𝑋𝛼 at t, for α∈(0, 1] is defined as 𝑚𝛼(𝑡) =

 �𝐸[𝑋𝛼 − 𝑡/𝑋𝛼 >  𝑡;𝑓𝑜𝑟 𝑡 <  𝑡∗
0 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   where t* = sup{t: 𝐹�  (𝑡) > 0}. 

Definition 3.2: 

 Let X be anon-negative fuzzy random variable with 

an absolutely continuous distribution function F. The α-level 

hazard rate of X is defined as  

 𝑟𝛼(𝑡) = 𝑓𝛼(𝑡)
𝐹𝛼����(𝑡)

 ; t∈R, α∈(0, 1]. 

Definition 3.3: 

 Let X and Y be two non-negative fuzzy random 

variables with α-level mean residual functions 𝑚𝛼 and 𝑙𝛼 

respectively such that 𝑚𝛼(t) ≤ 𝑙𝛼(𝑡) for all t and for each α∈(0, 

1]. Then X is said to be smaller than Y in fuzzy mean residual 

life order. Symbolically, it is denoted as X≤𝑓𝑚𝑟𝑙Y. 

Definition 3.4: 

 Let X and Y be two non-negative fuzzy random 

variables with survival functions 𝐹𝛼� (𝑥) and 𝐺𝛼����(𝑥) respectively. 

Then X≤𝑓𝑚𝑟𝑙Y iff 
∫ 𝐺𝛼����(𝑢)𝑑𝑢∞
𝑡
∫ 𝐹𝛼����(𝑢)𝑑𝑢∞
𝑡

 increases in t over 

�𝑡: ∫ 𝐹𝛼� (𝑢)𝑑𝑢 > 0∞
𝑡 � for each α∈(0, 1]. 

The following result, due to JEL Piriyakumar and A. 

Yamuna[4], connects the fuzzy mean residual life order with 

hazard rate order. 

Theorem 3.5: 

 Let X and Y be two non- negative fuzzy random 

variables with α-level mean residual life functions mα and lα 

respectively. Suppose that 𝑚∝(𝑡)
𝑙∝(𝑡)

 increases in t and for each α ∈ 

(0, 1]. Then if  X ≤ fmrl Y then it follows that X ≤ fhr Y. 

 

4. SOME NEW RESULTS 

This section presents some new results concerning the fuzzy 

mean residual life order and some characterization results. 

Definition 4.1: 

 A non-negative fuzzy random variable X is said to be 

smaller than another fuzzy random variable Y in the fuzzy up 

mean residual order, denoted by X≤𝑓𝑚𝑟𝑙↑Y if 𝑋𝛼 −

 𝑥 ≤𝑓𝑚𝑟𝑙↑ 𝑌𝛼 for all x ≥ 0 and for each α∈(0, 1]. 

 It is to be noted that 𝑚𝑋𝛼−𝑥(𝑡) =  𝑚𝑋𝛼(𝑥 + 𝑡) for each 

α∈(0, 1]. Symbolically,  

𝑋𝛼𝑥 = [𝑋𝛼 − 𝑥/𝑋𝛼 > 𝑥]. 

Definition 4.2: 

 Let X be a non-negative fuzzy random variable with 

survival function 𝐹𝛼�  and a finite mean µ. The α-level up mean 

residual life of 𝑋𝛼𝑥 at t, for each α∈(0, 1] is defined as  
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𝑚𝑋𝛼𝑥(𝑡) =  �𝐸[(𝑋𝛼 − 𝑥) − 𝑡/𝑋𝛼 − 𝑥 >  𝑡;𝑓𝑜𝑟 𝑡 <  𝑡∗
0 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   where 

t* = sup{t: 𝐹�  (𝑡) > 0}. 

Clearly  𝑚𝑋𝛼𝑥(𝑡) is differentiable over {t : P(𝑋𝛼𝑥 > t) > 0} 

And we get ∫ 𝐹𝑋𝛼𝑥������∞
𝑡 (𝑢)𝑑𝑢 =  1

𝐹𝑋𝛼������(𝑥)
∫ 𝐹𝛼� (𝑢)𝑑𝑢∞
𝑡+𝑥  and 

𝑚𝑋𝛼𝑥(𝑡) = 𝑚𝑋𝛼(𝑡 + 𝑥) for each α∈(0, 1]. 

Also, X ≤𝑓𝑚𝑟𝑙↑ Y iff  𝛼 

Proposition 4.3: 

 X≤𝑓𝑚𝑟𝑙↑ X iff X is DMRL. 

Proof: 

 By definition,  X≤𝑓𝑚𝑟𝑙↑ X   

⇔ 𝑋𝛼 − 𝑥 ≤𝑓𝑚𝑟𝑙 𝑋𝛼 for x ≥ 0 and for each α∈(0, 1]. 

⇔ [𝑋𝛼 − 𝑥/𝑋𝛼 > 𝑥] ≥ hmrl [𝑋𝛼 − 𝑥′/𝑋𝛼 > 𝑥′]  

whenever xꞌ ≥ x ≥ 0 

⇔ ⋃ [𝑋𝛼 − 𝑥 𝑋𝛼⁄ > 𝑥]𝛼𝜖(0,1]  ≥  ℎ𝑚𝑟𝑙 ⋃ [𝑋𝛼 − 𝑥′/𝑋𝛼𝛼𝜖(0,1] >

𝑥′]     𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑥ꞌ ≥ 𝑥 ≥ 0                                                                                                      

 ⇔ X is DMRL  (by definition of DMRL) 

 

Proposition 4.4: 

 If  X ≤𝑓𝑚𝑟𝑙↑ Y and  Y ≤𝑓𝑚𝑟𝑙↑ Z, then X ≤𝑓𝑚𝑟𝑙↑ Z. 

Proof: 

     X ≤𝑓𝑚𝑟𝑙↑ Y ⇒ 𝑋𝛼 − 𝑥 ≤𝑓𝑚𝑟𝑙 𝑌𝛼 for all x ≥ 0, for 

each α∈(0, 1].              (1) 

Similarly Y ≤𝑓𝑚𝑟𝑙↑ Z ⇒ 𝑌𝛼 − 𝑦 ≤𝑓𝑚𝑟𝑙 𝑍𝛼   

               (2) 

To prove X ≤𝑓𝑚𝑟𝑙↑ Z 

By (1), 

𝑋𝛼 − 𝑥 − 𝑦 ≤𝑓𝑚𝑟𝑙 𝑌𝛼 −  𝑦 for x, y ≥ 0  

        ≤𝑓𝑚𝑟𝑙 𝑍𝛼   

           

by (2) 

           ⇒ 𝑋𝛼 − 𝑥′ ≤𝑓𝑚𝑟𝑙 𝑍𝛼    

   where xꞌ = x – y 

       ⇒ ⋃ [𝑋𝛼 − 𝑥′]𝛼𝜖(0,1]  ≤ fmrl ⋃ 𝑍𝛼𝛼𝜖(0,1]  

       ⇒ X ≤𝑓𝑚𝑟𝑙↑ Z. 

Proposition 4.5: 

 If X ≤𝑓𝑚𝑟𝑙↑ Y and Y ≤𝑓𝑚𝑟𝑙↑ X then X =d Y. 

Proof: 

 It is obvious from the definition that up fuzzy mean 

residual life order implies fuzzy mean residual life order. 

Now, we give some condition under which FMRL order 

implies FMRL↑ order. 

Theorem 4.6: 

 If X ≤𝑓𝑚𝑟𝑙  Y and either x or Y is DMRL, then 

X ≤𝑓𝑚𝑟𝑙↑ Y. 

Proof: 

 We know that X ≤𝑓𝑚𝑟𝑙↑ Y iff , X ≤𝑓𝑚𝑟𝑙↑ Y iff 

 ∫
𝐹𝛼����(𝑥+𝑢)𝑑𝑢∞

𝑡
∫ 𝐺𝛼����(𝑢)𝑑𝑢∞
𝑡

  is decreasing in t over �𝑡: ∫ 𝐹𝛼� (𝑢)𝑑𝑢 > 0∞
𝑡 �, for 

all x ≥ 0 and for each α∈(0, 1]. 

Now, we can write 

∫ 𝐹𝛼����(𝑥+𝑢)𝑑𝑢∞
𝑡
∫ 𝐺𝛼����(𝑢)𝑑𝑢∞
𝑡

 = � ∫
𝐹𝛼����(𝑥+𝑢)𝑑𝑢∞

𝑡
∫ 𝐹𝛼����(𝑢)𝑑𝑢∞
𝑡

� � ∫
𝐹𝛼����(𝑢)𝑑𝑢∞

𝑡
∫ 𝐺𝛼����(𝑢)𝑑𝑢∞
𝑡

�                                                               

(3) 
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We see that the first factor on the RHS of (3) is decreasing in t 

if X is DMRL and the second factor is decreasing in t, as 

X ≤𝑓𝑚𝑟𝑙  Y. 

 Hence, 
∫ 𝐹𝛼����(𝑥+𝑢)𝑑𝑢∞
𝑡
∫ 𝐺𝛼����(𝑢)𝑑𝑢∞
𝑡

  is decreasing in t for x ≥ 0 and 

for each α∈(0, 1]. 

If Y is DMRL, then proof is similar. 

∴ by proposition 4.3 and by 4.4 we see that X ≤𝑓𝑚𝑟𝑙↑ Y. 

Remark: 

The non-negative random variable X is DMRL if and only if 

[X – t / X > t] ≥hmrl [X – tꞌ / X > tꞌ]. 

Theorem 4.7: 

 Let X and Y be two non-negative fuzzy random 

variables with α-level mean residual life functions 𝑚𝛼 and 𝑙𝛼 

respectively. Suppose that 𝑚𝛼(𝑡)
𝑙𝛼(𝑡)

 is  increasing in t ≥ 0 and for 

each α∈(0, 1]. Then X ≤hr Y if X ≤𝑓𝑚𝑟𝑙↑ Y. 

Proof: 

𝑚𝑋𝛼𝑥(𝑡) =  �𝐸[(𝑋𝛼 − 𝑥) − 𝑡/𝑋𝛼 − 𝑥 >  𝑡;𝑓𝑜𝑟 𝑡 <  𝑡∗
0 ,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   where 

t* = sup{t: 𝐹�  (𝑡) > 0} and α∈(0, 1]. 

Clearly 𝑚𝑋𝛼𝑥(𝑡) is differentiable over {t : P(𝑋𝛼𝑥 > t) > 0} and 

that if X has the α-level fuzzy hazard rate function rα then  

  𝑟𝛼(𝑡) = 
𝑚𝛼′(𝑡) + 1

𝑚𝛼(𝑡)
  where mαꞌ (t) denote the 

derivative of 𝑚𝛼(t). 

Similarly, if Y has the α-level fuzzy hazard rate function qα, 

then 𝑞𝛼(𝑡) =  
𝑙𝛼′(𝑡) + 1

𝑙𝛼(𝑡)
  . 

 By stipulation 𝑚𝛼(𝑡)
𝑙𝛼(𝑡)

 increases in t for each α∈(0, 1] 

and X ≤𝑓𝑚𝑟𝑙↑ Y. 

This shows that   𝑚𝛼(𝑡) ≤ 𝑙𝛼(𝑡) for all t and for each α∈(0, 1]. 

Now, 𝑟𝛼(𝑡) =  
𝑚𝛼′(𝑡) 

𝑚𝛼(𝑡)
 + 1

𝑚𝛼(𝑡)
 

                    ≥  
𝑙𝛼′(𝑡) 

𝑙𝛼(𝑡)
 + 1

𝑙𝛼(𝑡)
 

         =  𝑞𝛼(𝑡) 

i.e) 𝑟𝛼(𝑡)  ≥ 𝑞𝛼(𝑡) for all t and for each α∈(0, 1]. 

Hence, ⋃  𝛼 𝑟𝛼(𝑡)𝛼𝜖(0,1]  ≥ ⋃ 𝛼 𝑞𝛼(𝑡)𝛼𝜖(0,1]  

i.e) r(t) ≥ q(t) ⇒ X ≤hr Y 

REFERENCES 

1. M. C. Bhattacharjee, The class of mean residual lives 
and some consequences, SIAM Journal on Algebraic 
and discrete methods, Vol. 3, no.1, 614 – 619, 1995. 

2. D. M. Bradley and R. C Gupta, Limiting behavior of 
the mean residual life, Annals of the institute of 
statistical mathematics, vol 55, 217-226, 2003. 

3. J. Earnest Lazarus Piriyakumar and N. Renganathan, 
Stochastic orderings of fuzzy random variables, Int. J. 
of information and management sciences, vol 12, no. 
4, 29 – 40, 2001. 

4. J. Earnest Lazarus Piriyakumar and A. Yamuna, on 

the mean residual life and some other stochastic 

orders of fuzzy random variables, Proceedings of inter 

national conference, CIT, Coimbatore. 

5. Kwakernaak. H., Fuzzy random variables – I: 
Definition and theorems, Inform. Sci., 15, 1 – 29, 
1978. 

6. Kwakernaak . H., Fuzzy random variables – II: 
Algorithms and examples for the discrete case, 
infor. Sci., 17, 253-278, 1979. 

7. Puri, M. L., and D. A. Ralescu, Fuzzy random 
variables, J. Math. Anal. Appl. 114, 409-422, 1986. 

8. Shaked. M  and J. G. Shanthikumar, Stochastic 
orders, New York: Springer, 2007. 

 

IJSER

http://www.ijser.org/



